Copied to
clipboard

G = C3xC24:4S3order 288 = 25·32

Direct product of C3 and C24:4S3

direct product, metabelian, supersoluble, monomial

Aliases: C3xC24:4S3, (C2xC6)wrC2, C62:23D4, C62.211C23, (C23xC6):7S3, C6.63(C6xD4), (C23xC6):11C6, C24:10(C3xS3), C32:12C22wrC2, C23.35(S3xC6), (C22xC62):3C2, C6.D4:13C6, (C22xC6).131D6, (C6xDic3):19C22, (C2xC62).103C22, (C2xC6):11(C3xD4), (C2xC3:D4):8C6, (S3xC2xC6):5C22, C3:3(C3xC22wrC2), (C6xC3:D4):22C2, C2.26(C6xC3:D4), C22:5(C3xC3:D4), C22.66(S3xC2xC6), (C2xC6):16(C3:D4), (C22xS3):2(C2xC6), (C2xDic3):3(C2xC6), (C3xC6).271(C2xD4), C6.164(C2xC3:D4), (C22xC6).67(C2xC6), (C2xC6).66(C22xC6), (C3xC6.D4):29C2, (C2xC6).344(C22xS3), SmallGroup(288,724)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C3xC24:4S3
C1C3C6C2xC6C62S3xC2xC6C6xC3:D4 — C3xC24:4S3
C3C2xC6 — C3xC24:4S3
C1C2xC6C23xC6

Generators and relations for C3xC24:4S3
 G = < a,b,c,d,e,f,g | a3=b2=c2=d2=e2=f3=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, gbg=be=eb, bf=fb, gcg=cd=dc, ce=ec, cf=fc, de=ed, df=fd, dg=gd, ef=fe, eg=ge, gfg=f-1 >

Subgroups: 714 in 327 conjugacy classes, 82 normal (16 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, C22, S3, C6, C6, C2xC4, D4, C23, C23, C32, Dic3, C12, D6, C2xC6, C2xC6, C2xC6, C22:C4, C2xD4, C24, C3xS3, C3xC6, C3xC6, C2xDic3, C3:D4, C2xC12, C3xD4, C22xS3, C22xC6, C22xC6, C22wrC2, C3xDic3, S3xC6, C62, C62, C62, C6.D4, C3xC22:C4, C2xC3:D4, C6xD4, C23xC6, C23xC6, C6xDic3, C3xC3:D4, S3xC2xC6, C2xC62, C2xC62, C24:4S3, C3xC22wrC2, C3xC6.D4, C6xC3:D4, C22xC62, C3xC24:4S3
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2xC6, C2xD4, C3xS3, C3:D4, C3xD4, C22xS3, C22xC6, C22wrC2, S3xC6, C2xC3:D4, C6xD4, C3xC3:D4, S3xC2xC6, C24:4S3, C3xC22wrC2, C6xC3:D4, C3xC24:4S3

Permutation representations of C3xC24:4S3
On 24 points - transitive group 24T626
Generators in S24
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(1 3 2)(4 6 5)(7 9 8)(10 12 11)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)

G:=sub<Sym(24)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,3,2)(4,6,5)(7,9,8)(10,12,11)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,3,2)(4,6,5)(7,9,8)(10,12,11)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(1,3,2),(4,6,5),(7,9,8),(10,12,11),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24)]])

G:=TransitiveGroup(24,626);

90 conjugacy classes

class 1 2A2B2C2D···2I2J3A3B3C3D3E4A4B4C6A···6F6G···6BK6BL6BM12A···12F
order12222···22333334446···66···66612···12
size11112···212112221212121···12···2121212···12

90 irreducible representations

dim1111111122222222
type+++++++
imageC1C2C2C2C3C6C6C6S3D4D6C3xS3C3:D4C3xD4S3xC6C3xC3:D4
kernelC3xC24:4S3C3xC6.D4C6xC3:D4C22xC62C24:4S3C6.D4C2xC3:D4C23xC6C23xC6C62C22xC6C24C2xC6C2xC6C23C22
# reps1331266216321212624

Matrix representation of C3xC24:4S3 in GL4(F13) generated by

1000
0100
0030
0003
,
12000
01200
0010
00012
,
1000
01200
0010
00012
,
12000
01200
00120
00012
,
1000
0100
00120
00012
,
1000
0100
0030
0009
,
0100
1000
0001
0010
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,3,0,0,0,0,3],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,12],[1,0,0,0,0,12,0,0,0,0,1,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,1,0,0,0,0,3,0,0,0,0,9],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;

C3xC24:4S3 in GAP, Magma, Sage, TeX

C_3\times C_2^4\rtimes_4S_3
% in TeX

G:=Group("C3xC2^4:4S3");
// GroupNames label

G:=SmallGroup(288,724);
// by ID

G=gap.SmallGroup(288,724);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,701,590,9414]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=e^2=f^3=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,g*b*g=b*e=e*b,b*f=f*b,g*c*g=c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,g*f*g=f^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<